Blacklegged Ticks (*Ixodes scapularis*) and Tick-borne Disease in Onondaga County, NY

Nick Piedmonte, MS Graduate Student
Melissa Prusinski, NYSDOH
Stephen Shaw, Assistant Professor
Melissa Fierke, Associate Professor

N. Piedmonte
Ticks in New York

- About **30 species** of ticks are found in NY
- **10 species** are known to bite humans
- **4 species** are medically relevant

- Blacklegged or deer tick
- American dog tick
- Lone Star tick
- Woodchuck tick

Slide Courtesy of NYSDOH
Hosts

- Some generalists, some specialists
- Ticks infest every class of terrestrial vertebrates
 - Mammals
 - Birds
 - Reptiles
- Mammals and birds most relevant in our neighborhood
Unfortunately that includes…

Companion Animals

Humans
Primary Host Species in New York

• White-footed mouse
 – Primary reservoir host

• White-tailed deer
 – Primary reproductive host
 – Dispersal mechanism

• Migratory Birds
 – Ex. American Robin
 – Ground-feeding behavior allows host acquisition
 – Long-distance dispersal mechanism
Feeding Progression

- Larvae take 3-5 days to fully engorge
- Nymphs take 3-5 days to fully engorge
- Adults take 5-7 days to fully engorge

Nymph

Adult Female
Life Cycle

- Three blood-feeding life stages
- One blood meal/stage
Seasonal Activity

Seasonal activity of *I. scapularis* adults, nymphs, and larvae.

- **Adults:** Oct – Nov & Apr – May
- **Nymphs:** Jun – Jul
- **Larvae:** Aug – Sept

Connecticut Agricultural Station
Blacklegged Ticks & Disease in NY

- Three blood-feeding life stages
- Nymphs and adults most relevant to disease
- Capable of transmitting:
 - Lyme Disease
 - Anaplasmosis
 - Human Babesiosis
 - Borrelia miyamotoi
 - Powassan Virus
Lyme Disease

- *Borrelia burgdorferi* (Bacterium)
- Inflammatory disease characterized by a bullseye shaped rash (erythema migrans), headache, fever, chills, and fatigue
- May be followed by arthritic, neurological, and cardiac disorders if left untreated
- Treatment: Doxycycline
Borrelia miyamotoi

- Related to bacteria that cause tick-borne relapsing fever
- Symptoms: similar to Lyme disease (fever, headache, joint pain, etc.), but usually **no rash**
- Treatment: Doxycycline
Anaplasmosis

- Caused by *Anaplasma phagocytophilum*
- Bacterium
- Parasite of white blood cells
- Symptoms: fever, headache, absence of skin rash, white-blood cell reduction, platelet deficiency and liver damage
- Treatment: Doxycycline
Human Babesiosis

• Caused by *Babesia microti*
• Infects red blood cells
• Many without symptoms, but some nonspecific symptoms including: fever, chills, sweats, headache, body aches, loss of appetite, nausea, or fatigue
• Treatment:
 – Atovaquone & azithromycin
 – Clindamycin & quinine
Powassan Virus

- Flavivirus
- Causes tick-borne encephalitis
- 10% case fatality rate
- Permanent and severe neurological effects in \(\approx 50\% \) of survivors (partial paralysis, muscle atrophy, chronic severe headaches, and memory problems)
- Treatment: Currently no vaccines or medications to treat or prevent POW virus infection exist

Telford et al. 2015
Estimated Transmission Times

<table>
<thead>
<tr>
<th>Disease</th>
<th>Disease Causative Agent</th>
<th>Estimated Transmission Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyme Disease¹</td>
<td>Borrelia burgdorferi</td>
<td>36-48 hrs</td>
</tr>
<tr>
<td>Anaplasmosis²</td>
<td>Anaplasma phagocytophilum</td>
<td>12-24 hrs</td>
</tr>
<tr>
<td>Human Babesiosis</td>
<td>Babesia microti</td>
<td>24-36 hrs</td>
</tr>
<tr>
<td>Powassan Virus³</td>
<td>Flaviviridae sp.</td>
<td>15 min</td>
</tr>
</tbody>
</table>

¹ Piesman et al. 1987
² Katavolos et al. 1998
³ Ebel & Kramer 2004
Why do we care now?
Reported Cases of Lyme Disease -- United States, 2001

1 dot placed randomly within county of residence for each reported case
Reported Cases of Lyme Disease -- United States, 2002

1 dot placed randomly within county of residence for each reported case
Reported Cases of Lyme Disease -- United States, 2003

1 dot placed randomly within county of residence for each reported case
Reported Cases of Lyme Disease -- United States, 2004

1 dot placed randomly within county of residence for each reported case

CDC 2015
Reported Cases of Lyme Disease -- United States, 2006

1 dot placed randomly within county of residence for each reported case

CDC 2015
Reported Cases of Lyme Disease -- United States, 2008

1 dot placed randomly within county of residence for each confirmed case
Reported Cases of Lyme Disease -- United States, 2009

1 dot placed randomly within county of residence for each confirmed case

CDC 2015
Reported Cases of Lyme Disease -- United States, 2010

1 dot placed randomly within county of residence for each confirmed case.
Reported Cases of Lyme Disease -- United States, 2011

1 dot placed randomly within county of residence for each confirmed case
Reported Cases of Lyme Disease -- United States, 2012

1 dot placed randomly within county of residence for each confirmed case

CDC 2015
Reported Cases of Lyme Disease -- United States, 2013

1 dot placed randomly within county of residence for each confirmed case

CDC 2015
Research in Onondaga County

- Research at SUNY ESF investigating blacklegged tick distribution and tick-borne disease prevalence in Onondaga County specifically
- Twelve sites selected throughout Onondaga
- Wooded and edge habitat sampled for host-seeking ticks
Research in Onondaga County

• Ticks are identified to species and sorted based on a variety of attributes (site, habitat, etc.)
• Subset from each site is tested for disease causative agents at NYSDOH facilities in Albany, NY
• Tick densities and disease prevalence can then be superimposed on the landscape
Disease Prevalence: Nymphs

- Onondaga Disease Status:
 - Lyme Disease = Present
 - Anaplasmosis = Present
 - Babesiosis = Absent
 - Powassan/DTV = Absent

- Coinfection…?
 - Yes, but very rare

- Lyme Disease
 - Average: 17.9 %
 - Range: 0 – 31.4 %

- Anaplasmosis
 - Average: 2.1 %
 - Range: 0 – 4%
Nymph Density

The graph shows the mean number of nymphs per 100 m² across various sites labeled SYR 1 to SYR 6 and CNTY 1 to CNTY 6. The sites are divided into two categories: Wooded (black bars) and Edge (gray bars). The y-axis represents the mean number of nymphs, while the x-axis lists the sites. The error bars indicate the variability in the data.
Adult Density

![Bar chart showing mean adult density per site (Syr 1 to Syr 6 and Cnty 1 to Cnty 6). The chart compares wooded and edge sites, with bars indicating variability in density across sites.](image)
Preliminary Conclusions

• Ticks & tick-borne disease are present throughout Onondaga County
 – Over 99% of tick samples were blacklegged ticks
 – Tick density varied from site to site, but every site had ticks
 – Ten of the thirteen sites sampled had nymphs with Lyme disease causative agent
 – Twelve of the thirteen sites sampled had adults with Lyme disease causative agent

• Some habitats may represent a greater risk of exposure than others based on the time of year (summer vs. fall)
 – Leaf litter and debris in wooded habitats, and tall vegetation along edge habitats, make these areas humid environments where ticks can thrive
Integrated Tick Management

- Personal Protective Measures
- Landscape Manipulation
- Landscape Acaricide Application
- Host Targeted Vaccinations
- Deer Sterilization or Culling
Personal Protective Measures

- Pants tucked into socks
- Shirt tucked into pants
- Insect repellants (DEET or permethrin)
 - Sprays
 - Infused clothing
- Periodic “tick checks”
- Showering within 2 hours of outdoor activity
Landscape Manipulation

- Creating landscapes inhospitable to ticks
 - Minimize shade
 - Hot and dry environments
- Minimize or move cavity forming structures
 - Wood piles
 - Stone walls
- Remove heavy leaf litter from recreational lawn space
- Bird feeders should only be operated during winter, if at all
 - Bird seed draws in small mammals, even if we don’t see them
Landscape Acaricide Application

• Acaricides can be applied directly to the landscape

• Pros
 – Seasonally effective

• Cons
 – Timing of application important
 – Pet health concerns (short term)
 – Annual/biannual application (costly)
 – May be ineffective if neighbors are not also applying acaricide
Host Targeted Acaricides

• Acaricides targeting most abundant host species
• Four-poster devices
 – Acaricide applied to deer
 – NOT legal in upstate NY
• Small mammal bait boxes
 – Acaricides applied to chipmunks and mice
• Medicated small mammal bait
Deer Sterilization

• Sterilization of deer population to control reproductive capacity of adult female ticks
• Pros
 – Nonlethal
 – Has other benefits in areas with high traffic (vehicle collision reduction)
• Cons
 – Has compounded the problem when incorrectly implemented
 – Costly
 – Ongoing implementation necessary
Deer Hunting or Culling

- Reduction or sterilization of deer population to control reproductive capacity of adult female ticks

Pros
- Has led to drastic reductions in tick populations in particular environments
- Has other benefits in areas with high traffic (vehicle collision reduction)
- Relatively cheap in comparison to other management options

Cons
- Lethal (Controversial)
- High level of reduction necessary to detect results (6-8 deer/mi2)
- Recurring application of this strategy may be required
- Safety concerns in highly populated areas
Acknowledgements

• Dr. JoAnne Oliver (NYSDOH)
• Dr. Brian Underwood (SUNY ESF Adjunct Associate Professor)
• Brigitte Wierzbicki (SUNY ESF Undergraduate Field Technician)
• New York State Department of Health
• New York State Department of Environmental Conservation
• McIntire-Stennis Program (funding)
• Landowners
Literature Cited
